

Meethack Torino
CI/CD Security Risks & CI/CD Goat

A new attack surface
● CI/CD environments, processes and systems are the

beating heart of any modern software organization.
● They deliver code from an engineer’s workstation to

production.
● However, they have also reshaped the attack surface

with a multitude of new avenues and opportunities for
attackers.

● Adversaries are shifting their attention to CI/CD,
realizing CI/CD services provide an efficient path to
reaching an organization's crown jewels.

https://owasp.org/www-project-top-10-ci-cd-security-risks/

Top 10 CI/CD Security Risks
1. Insufficient Flow Control Mechanisms
2. Inadequate Identity and Access Management
3. Dependency Chain Abuse
4. Poisoned Pipeline Execution (PPE)

Direct (D-PPE)
Indirect (I-PPE)
Public (3PE)

5. Insufficient PBAC (Pipeline-Based Access Controls)
6. Insufficient Credential Hygiene
7. Insecure System Configuration
8. Ungoverned Usage of 3rd Party Services
9. Improper Artifact Integrity Validation
10. Insufficient Logging and Visibility

https://owasp.org/www-project-top-10-ci-cd-security-risks/

Proposed by Cider
Security (acquired by
Palo Alto Networks).

Still an OWASP “Lab
Project”.

CI/CD Goat: our playground

https://github.com/cider-security-research/cicd-goat

● Things to keep in mind:
– Builds will start on Jenkins, usually

after a Pull Request (PR).
– PRs can be created between main

branch and a newly created branch
on Gitea.

– Jenkins will mask plain text secrets
leaked in console output. This will
happen in every challenge!

– Each challenge stands on its own. Do
not use access gained in one
challenge to solve another challenge.

– Don’t be afraid to look at hints.
– There is no need to exploit CVEs.

Just a couple of prerequisites...

git client 101
● Clone a repository (use Gitea credentials):

– git clone
http://localhost:3000/Wonderland/<repository_na
me>.git

● Checkout to a new branch:
– git checkout -b <branch_name>

● Add and commit with message:
– git commit -am "Your message"

● Push to the remote branch:
– git push -u origin <branch_name>

An example of Jenkinsfile
● Jenkins Pipeline is a suite of plugins which

supports implementing and integrating
continuous delivery pipelines into Jenkins.

● A continuous delivery (CD) pipeline is an
automated expression of your process for
getting software from version control right
through to your users and customers.

● The definition of a Jenkins Pipeline is
written into a text file (called a Jenkinsfile)
which in turn can be committed to a
project’s source control repository.

● This is the foundation of “Pipeline-as-code”;
treating the CD pipeline as a part of the
application to be versioned and reviewed
like any other code.

● https://www.jenkins.io/doc/book/pipeline/

“[...] You take the red pill, you stay in Wonderland,
and I show you how deep the rabbit hole goes.”

Challenge: White Rabbit - 100
● http://localhost:8000/challenges#White%20Rabbit-1
● Scenario:

– Use your access to the Wonderland/white-rabbit repository to steal the flag1
secret stored in the Jenkins credential store.

– Secret is stored with the Global scope, which makes it accessible to any
pipeline on the Jenkins instance.

– Jenkinsfile is not protected.
– https://www.jenkins.io/doc/book/pipeline/jenkinsfile/#handling-credentials

● Solution:
– Direct Poisoned Pipeline Execution (D-PPE)
– https://github.com/cider-security-research/cicd-goat/blob/main/solutions/

white-rabbit.md

Challenge: Mad Hatter - 100
● http://localhost:8000/challenges#Mad%20Hatter-3
● Scenario:

– Use your access to the Wonderland/mad-hatter repository to steal the
flag3 secret.

– Jenkinsfile is protected: the pipeline is configured in a separate
repository from where the application code is stored at. The attacker
doesn’t have permission to trigger a pipeline with a modified Jenkinsfile.

● Solution:
– Indirect Poisoned Pipeline Execution (I-PPE)
– https://github.com/cider-security-research/cicd-goat/blob/main/

solutions/mad-hatter.md

Challenge: Caterpillar - 200
● http://localhost:8000/challenges#Caterpillar-2
● Scenario:

– Use your access to the Wonderland/caterpillar repository to steal the flag2 secret, which is
stored in the Jenkins credential store.

– Jenkinsfile is protected: the pipeline is configured in the same repository from where the
application code is stored at, but the current user can’t change it.

– There are two jobs in Jenkins: -prod and -test.
– Think about this repository like an “open source” one… And escalate your privileges to control

it.
● Solution:

– Public Poisoned Pipeline Execution (3PE)
– https://github.com/cider-security-research/cicd-goat/blob/main/solutions/caterpillar.md
– Considerations about the when condition in the deploy stage of the pipeline?

● You can both: remove the condition for the attack and do it via PR or leave it and push directly on main
branch instead.

Challenge: Cheshire Cat - 200
● http://localhost:8000/challenges#Cheshire%20Cat-5
● Scenario:

– All jobs in your victim’s Jenkins instance run on dedicated nodes. You want to execute code
on the Jenkins Controller.

– Use your access to the Wonderland/cheshire-cat repository to run code on the Controller
and steal ~/flag5.txt from its file system.

– https://www.jenkins.io/doc/book/managing/nodes/#components-of-distributed-builds
– https://www.jenkins.io/doc/book/pipeline/syntax/#agent
– http://localhost:8080/computer/

● Solution:
– Direct Poisoned Pipeline Execution (D-PPE)
– Insufficient PBAC (Pipeline-Based Access Controls)
– https://github.com/cider-security-research/cicd-goat/blob/main/solutions/cheshire-cat.md

● Error in the solution: the file name is missing .txt extension.

Challenge: Duchess - 100
● http://localhost:8000/challenges#Duchess-4
● Scenario:

– You’ve got access to the Wonderland/duchess repository, which heavily uses
Python. There must be some PyPi token left somewhere. Can you find it?

– The flag is the token.
● Solution:

– Insufficient Credential Hygiene
– You could need external tools for this!

● gitleaks detect -v --enable-rule="pypi-upload-token"
● docker run -v <full_path_to_host_folder_to_scan>:/path
zricethezav/gitleaks:latest detect --source="/path" -v --enable-
rule="pypi-upload-token"

– https://github.com/cider-security-research/cicd-goat/blob/main/solutions/duchess.md

Challenge: Twiddledum - 200
● http://localhost:8000/challenges#Twiddledum-6
● Scenario:

– The flag is under process.env.FLAG6.
– You can’t interact with Wonderland/Twiddledum repository.
– The Wonderland/Twiddledum repository is a JS app that uses

Wonderland/Twiddledee as a dependency. View its package.json file.
– Trying to add pre or post-install scripts with malicious code should fail, as the

Twiddledum pipeline runs with the --ignore-scripts param.
● https://docs.npmjs.com/cli/v9/using-npm/scripts

● Solution:
– Dependency Chain Abuse
– https://github.com/cider-security-research/cicd-goat/blob/main/solutions/

twiddledum.md

Challenge: Dodo - 200
● http://localhost:8000/challenges#Dodo-7
● Scenario:

– Your mission is to make the dodo S3 bucket public-readable without getting
caught.

● The flag will be printed in the job’s console output once you’re done.
– Checkov (https://github.com/bridgecrewio/checkov) validates that the S3 bucket

created by the Terraform code is private, which stops you from making it public.
– https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/

s3_bucket_acl
– https://www.checkov.io/2.Basics/Hard%20and%20soft%20fail.html

● Solution:
– Insufficient Flow Control Mechanisms
– https://github.com/cider-security-research/cicd-goat/blob/main/solutions/dodo.md

Challenge: Dormouse - 300
● http://localhost:8000/challenges#Dormouse-9
● Scenario:

– You can’t interact with Wonderland/dormouse repository.
– The Jenkinsfile uses a reportcov.sh script.
– Cov/reportcov is a public repository of a 3rd party used by other CI pipelines.

● It has its own Jenkins job, which you can’t view, creating an artifact stored remotely, i.e. reportcov.sh.
● All this can be viewed via the Jenkinsfile.
● You can’t interact with the repository.

● Solution:
– Ungoverned Usage of 3rd Party Services
– Improper Artifact Integrity Validation
– You could need external tools for this!
– https://github.com/cider-security-research/cicd-goat/blob/main/solutions/dormouse.md

● Error in the solution: the command to craft reportcov.sh is wrong, here the correct one → echo 'echo "$
{FLAG}" | base64' > reportcov.sh

Challenge: Mock Turtle - 300
● http://localhost:8000/challenges#Mock%20Turtle-10
● Scenario:

– Can you push to the main branch of the Wonderland/mock-turtle
repository? Do what’s needed to steal the flag10 secret stored in the
Jenkins credential store.

– The pipeline is used to automatically merge code into the main branch if
it introduces just a version bump (stored in the version file).

● Solution:
– Insufficient Flow Control Mechanisms
– https://github.com/cider-security-research/cicd-goat/blob/main/

solutions/mock-turtle.md
● Pay attention to the \n in version file! Be sure to remove them!

Challenge: Hearts - 300
● http://localhost:8000/challenges#Hearts-8
● Scenario:

– You have to exfiltrate agent System credentials stored on Jenkins via a user that has privileged access to manage agents.
– The users in the Jenkins instance are managed by Jenkins’ own user database, which lacks basic security controls against various

types of attacks, e.g., credentials bruteforce attempts.
– http://localhost:8080/asynchPeople/
– https://www.jenkins.io/blog/2022/12/27/run-jenkins-agent-as-a-service/ (Jenkins version is different)

● http://localhost:8080/computer/

● Solution:
– Inadequate Identity and Access Management
– Let’s skip the bruteforce part… If you need a password, it’s “rockme”.
– You could need external tools for this! To do everything via containers, follow these steps:

● Launch SSH-MITM with:
– docker network ls
– docker run --network=<the_goat_network_name_retrieved_before> --name evil-jenkins-agent -it --rm positronsecurity/ssh-mitm

● Use evil-jenkins-agent as host and 2222 as port.
● Check for incoming connections entering in the container:

– docker exec -it evil-jenkins-agent /bin/bash
– ls /home/ssh-mitm/log/
– cat /home/ssh-mitm/log/sftp_session_*.html

● This doesn’t make any sense, but it works...

– https://github.com/cider-security-research/cicd-goat/blob/main/solutions/hearts.md

Challenge: Gryphon - 500
● http://localhost:8000/challenges#Gryphon-11
● Scenario:

– You’ve compromised GitLab. The compromised user is the maintainer of pygryphon/pygryphon package.
– You can click the “Explore projects” button to view public projects.

● http://localhost:4000/explore
– There are also public projects: Wonderland/nest-of-gold and Wonderland/awesome-app to which you have read-only access.
– https://docs.gitlab.com/ee/ci/yaml/
– https://packaging.python.org/en/latest/tutorials/packaging-projects/

● https://packaging.python.org/en/latest/specifications/pypirc/
● https://docs.gitlab.com/ee/user/packages/pypi_repository/#authenticate-with-a-personal-access-token
● http://localhost:4000/-/profile/personal_access_tokens

● Solution:
– Dependency Chain Abuse
– Insufficient Credential Hygiene
– https://github.com/cider-security-research/cicd-goat/blob/main/solutions/gryphon.md

● git clone http://localhost:4000/pygryphon/pygryphon.git
● Patch the source code and create .pypirc file.
● python3 -m build
● Remove existing packages under http://localhost:4000/pygryphon/pygryphon/-/packages
● python3 -m twine upload -r gitlab --config-file .pypirc --verbose dist/*

Bugged challenge: it fails during the test stage!
T_T

https://github.com/cider-security-research/cicd-goat/issues/71

Backup

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

