e————

Meethack Torino

CI/CD Security Risks & CI/CD Goat

‘A new attack surface

* CI/CD environments, processes and systems are the
beating heart of any modern software organization.

* They deliver code from an engineer’s workstation to
production.

* However, they have also reshaped the attack surface
with a multitude of new avenues and opportunities for
attackers.

* Adversaries are shifting their attention to CI/CD,
realizing CI/CD services provide an efficient path to
reaching an organization's crown jewels.

https://owasp.org/www-project-top-10-ci-cd-security-risks/

Top 10 CI/CD Security Risks Bk

Palo Alto Networks).

Insufficient Flow Control Mechanisms
Inadequate Identity and Access Management
Dependency Chain Abuse
Poisoned Pipeline Execution (PPE)

Direct (D-PPE)

Indirect (I-PPE)

Public (3PE)
Insufficient PBAC (Pipeline-Based Access Controls)
Insufficient Credential Hygiene
Insecure System Configuration
Ungoverned Usage of 3rd Party Services
Improper Artifact Integrity Validation
10. Insufficient Logging and Visibility

Still an OWASP “Lab
Project”.

B N

© 00N O

https://owasp.org/www-project-top-10-ci-cd-security-risks/

CI/CD Goat: our playground

* Things to keep in mind:

= . . :
CTFe — Builds will start on Jenkins, usually
) | after a Pull Request (PR).
%’ - PRs can be created between main
Sizs Jeriins LocalStack branch and a newly created branch
on Gitea.

— Jenkins will mask plain text secrets
leaked in console output. This will
happen in every challenge!

Jenkins Agent

@ — Each challenge stands on its own. Do
Pockerin Bocker not use access gained in one
challenge to solve another challenge.

- Don’t be afraid to look at hints.

docker
Docker in Docker

— There is no need to exploit CVEs. ‘

https://github.com/cider-security-research/cicd-goat

Just a couple of prerequisites...

git client 101

* Clone a repository (use Gitea credentials):

- git clone
http://localhost:3000/Wonder land/<repository_na
me>.git
* Checkout to a new branch:
- g1it checkout -b <branch_name>

Add and commit with message:
- git commit -am "Your message"

Push to the remote branch:
- git push -u origin <branch_name>

‘An example of Jenkinsfile

pipeline {
e el | « Jenkins Pipeline is a suite of plugins which
T supports implementing and integrating
P continuous delivery pipelines into Jenkins.
t ('Install_R i ts') {
s - A continuous delivery (CD) pipeline is an
7 Victealenv venv automated expression of your process for
e PUES Rnstelstirsautenents B [e getting software from version control right
. through to your users and customers.
stage ('Lint") { » The definition of a Jenkins Pipeline is
TP oh "pylint ${PROJECT} || true” written into a text file (called a Jenkinsfile)
- which in turn can be committed to a
tae (‘Umit Testory i project’s source control repository.
steps { g - =G c ”
s eytest * This is the foundation of “Pipeline-as-code”,
} treating the CD pipeline as a part of the
} application to be versioned and reviewed
S like any other code.

,) om0 . https://www.jenkins.io/doc/book/pipeline{

} |

“[...] You take the , you stay Iin ,
and | show you how deep the rabbit hole goes.”

Challenge: White Rabbit - 100

 http://localhost:8000/challenges#White%20Rabbit-1

e Scenario:

— Use your access to the Wonderland/white-rabbit repository to steal the flag1
secret stored in the Jenkins credential store.

— Secret is stored with the Global scope, which makes it accessible to any
pipeline on the Jenkins instance.

— Jenkinsfile is not protected.
- https://www.jenkins.io/doc/book/pipeline/jenkinsfile/#handling-credentials

e Solution:
— Direct Poisoned Pipeline Execution (D-PPE)

- https://github.com/cider-security-research/cicd-goat/blob/main/solutions/
white-rabbit.md |

Challenge: Mad Hatter - 100

* http://localhost:8000/challenges#Mad%20Hatter-3

e Scenario:

— Use your access to the Wonderland/mad-hatter repository to steal the
flag3 secret.

— Jenkinsfile is protected: the pipeline is configured in a separate
repository from where the application code is stored at. The attacker
doesn’'t have permission to trigger a pipeline with a modified Jenkinsfile.

e Solution:
— Indirect Poisoned Pipeline Execution (I-PPE)

— https://github.com/cider-security-research/cicd-goat/blob/main/
solutions/mad-hatter.md

Challenge: Caterpillar - 200

* http://localhost:8000/challenges#Caterpillar-2

e Scenario:

— Use your access to the Wonderland/caterpillar repository to steal the flag2 secret, which is
stored in the Jenkins credential store.

— Jenkinsfile is protected: the pipeline is configured in the same repository from where the
application code is stored at, but the current user can’t change it.

— There are two jobs in Jenkins: -prod and -test.
— Think about this repository like an “open source” one... And escalate your privileges to control
It.
 Solution:
— Public Poisoned Pipeline Execution (3PE)
- https://github.com/cider-security-research/cicd-goat/blob/main/solutions/caterpillar.md

- Considerations about the when condition in the dep Loy stage of the pipeline?

* You can both: remove the condition for the attack and do it via PR or leave it and push directly on main
branch instead.

Challenge: Cheshire Cat - 200

* http://localhost:8000/challenges#Cheshire%20Cat-5

e Scenario:

All jobs in your victim’s Jenkins instance run on dedicated nodes. You want to execute code
on the Jenkins Controller.

Use your access to the Wonderland/cheshire-cat repository to run code on the Controller
and steal ~/flag5.txt from its file system.

https://www.jenkins.io/doc/book/managing/nodes/#components-of-distributed-builds
https://www.jenkins.io/doc/book/pipeline/syntax/#agent
http://localhost:8080/computer/

» Solution:
— Direct Poisoned Pipeline Execution (D-PPE)

— Insufficient PBAC (Pipeline-Based Access Controls)

- https://github.com/cider-security-research/cicd-goat/blob/main/solutions/cheshire-cat.md
* Error in the solution: the file name is missing .ixt extension.

Challenge: Duchess - 100

* http://localhost:8000/challenges#Duchess-4

e Scenario:

— You've got access to the Wonderland/duchess repository, which heavily uses
Python. There must be some PyPi token left somewhere. Can you find it?

- The flag is the token.

e Solution:
— Insufficient Credential Hygiene

- You could need external tools for this!
« gitleaks detect -v --enable-rule="pypi-upload-token"

« docker run -v <full_path_to_host_folder_to_scan>:/path
zricethezav/gitleaks: latest detect --source="/path" -v --enable-
rule="pypi-upload-token"

- https://github.com/cider-security-research/cicd-goat/blob/main/solutions/duchess.md

Challenge: Twiddledum - 200

* http://localhost:8000/challenges#Twiddledum-6
e Scenario:
- The flag is under process.env.FLAG6.

— You can’t interact with Wonderland/Twiddledum repository.

— The Wonderland/Twiddledum repository is a JS app that uses
Wonderland/Twiddledee as a dependency. View its package.json file.

— Trying to add pre or post-install scripts with malicious code should fail, as the
Twiddledum pipeline runs with the - -ignore-scripts param.

* https://docs.npmjs.com/cli/v9/using-npm/scripts
e Solution:
— Dependency Chain Abuse

- https://github.com/cider-security-research/cicd-goat/blob/main/solutions/
twiddledum.md

Challenge: Dodo - 200

* http://localhost:8000/challenges#Dodo-7

e Scenario;

— Your mission is to make the dodo S3 bucket public-readable without getting
caught.

* The flag will be printed in the job’s console output once you're done.

— Checkov (https://github.com/bridgecrewio/checkov) validates that the S3 bucket
created by the Terraform code is private, which stops you from making it public.

- https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/
s3 bucket_acl

- https://www.checkov.io/2.Basics/Hard%20and%20soft%20fail.html
 Solution:
— Insufficient Flow Control Mechanisms
- https://github.com/cider-security-research/cicd-goat/blob/main/solutions/dodo.r{pd

Challenge: Dormouse - 300

* http://localhost:8000/challenges#Dormouse-9

* Scenario:
- You can’t interact with Wonderland/dormouse repository.
- The Jenkinsfile uses a reportcov.sh script.
— Cov/reportcov is a public repository of a 3rd party used by other ClI pipelines.

* It has its own Jenkins job, which you can’t view, creating an artifact stored remotely, i.e. reportcov.sh.
 All this can be viewed via the Jenkinsfile.
* You can't interact with the repository.
* Solution:
- Ungoverned Usage of 3rd Party Services
— Improper Artifact Integrity Validation
- You could need external tools for this!

- https://github.com/cider-security-research/cicd-goat/blob/main/solutions/dormouse.md

 Error in the solution: the command to craft reportcov.sh is wrong, here the correct one — echo 'echo ['$
{FLAG}" | base64' > reportcov.sh

Challenge: Mock Turtle - 300

* http://localhost:8000/challenges#Mock%20Turtle-10

e Scenario:

— Can you push to the main branch of the Wonderland/mock-turtle
repository? Do what’'s needed to steal the flag10 secret stored in the
Jenkins credential store.

- The pipeline is used to automatically merge code into the main branch if
it introduces just a version bump (stored in the version file).

e Solution:
— Insufficient Flow Control Mechanisms

- https://github.com/cider-security-research/cicd-goat/blob/main/
solutions/mock-turtle.md

* Pay attention to the \n in version file! Be sure to remove them!

Challenge: Hearts - 300

* http://localhost:8000/challenges#Hearts-8
» Scenario:

You have to exfiltrate agent System credentials stored on Jenkins via a user that has privileged access to manage agents.

The users in the Jenkins instance are managed by Jenkins’ own user database, which lacks basic security controls against various
types of attacks, e.g., credentials bruteforce attempts.

http://localhost:8080/asynchPeople/

https://lwww.jenkins.io/blog/2022/12/27/run-jenkins-agent-as-a-service/ (Jenkins version is different)
* http://localhost:8080/computer/

 Solution:
- Inadequate Identity and Access Management
- Let’s skip the bruteforce part... If you need a password, it's “rockme”.

- You could need external tools for this! To do everything via containers, follow these steps:
* Launch SSH-MITM with:

- docker network 1s

- docker run --network=<the _goat_network name_retrieved_before> --name evil-jenkins-agent -it --rm positronsecurity/ssh-mitm
» Use evil-jenkins-agent as hostand 2222 as port.

* Check for incoming connections entering in the container:
- docker exec -it evil-jenkins-agent /bin/bash
- ls /home/ssh-mitm/log/
- cat /home/ssh-mitm/log/sftp_session_*.html
* This doesn’'t make any sense, but it works...

- https://github.com/cider-security-research/cicd-goat/blob/main/solutions/hearts.md

Challenge: Gryphon - 500

« http://localhost:8000/challenges#Gryphon-11 |

* Scenario:
- You've compromised GitLab. The compromised user is the maintainer of pygryphon/pygryphon package.

- You can click the “Explore projects” button to view public projects.
* http://localhost:4000/explore

- There are also public projects: Wonderland/nest-of-gold and Wonderland/awesome-app to which you have read-only access.
- https://docs.gitlab.com/ee/ci/lyaml/

- https://packaging.python.org/en/latest/tutorials/packaging-projects/
* https://packaging.python.org/en/latest/specifications/pypirc/
* https://docs.gitlab.com/ee/user/packages/pypi_repository/#authenticate-with-a-personal-access-token
* http://localhost:4000/-/profile/personal_access_tokens

 Solution:
- Dependency Chain Abuse
- Insufficient Credential Hygiene

Bugged challenge: it fails during the test stage!
TT

https://github.com/cider-security-research/cicd-goat/issues/71

- https://github.com/cider-security-research/cicd-goat/blob/main/solutions/gryphon.md
« git clone http://localhost:4000/pygryphon/pygryphon.git

« Patch the source code and create . pypirc file.

e python3 -m build

* Remove existing packages under http://localhost:4000/pygryphon/pygryphon/-/packages
python3 -m twine upload -r gitlab --config-file .pypirc --verbose dist/*

Backup

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

